Newton's method and a mesh-independence principle for certain semilinear boundary-value problems

نویسندگان

  • Ezequiel Dratman
  • Guillermo Matera
چکیده

We exhibit an algorithm which computes an approximation of the positive solutions of a family of boundary value problems with Neumann boundary conditions. Such solutions arise as the stationary solutions of a family of semilinear parabolic equations with Neumann boundary conditions. The algorithm is based on a nite dimensional Newton iteration associated with a suitable discretized version of the problem under consideration. To determine the behavior of such a discrete iteration we establish an explicit mesh independence principle. We apply a homotopy continuation algorithm to compute a starting point of the discrete Newton iteration, and the discrete Newton iteration until an approximation of the stationary solution is obtained. The algorithm performs roughly O((1/ )1/2) ops and function evaluations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using finite difference method for solving linear two-point fuzzy boundary value problems based on extension principle

In this paper an efficient Algorithm based on Zadeh's extension principle has been investigated to approximate fuzzy solution of two-point fuzzy boundary value problems, with fuzzy boundary values. We use finite difference method in term of the upper bound and lower bound of $r$- level of fuzzy boundary values. The proposed approach gives a linear system with crisp tridiagonal coefficients matr...

متن کامل

An Error Analysis and the Mesh Independence Principle for a Nonlinear Collocation Problem

A nonlinear Dirichlet boundary value problem is approximated by an orthogonal spline collocation scheme using piecewise Hermite bicubic functions. Existence, local uniqueness, and error analysis of the collocation solution and convergence of Newton’s method are studied. The mesh independence principle for the collocation problem is proved and used to develop an efficient multilevel solution met...

متن کامل

Asymptotic Mesh Independence of Newton's Method Revisited

The paper presents a new affine invariant theory on asymptotic mesh independence of Newton’s method for discretized nonlinear operator equations. Compared to earlier attempts, the new approach is both much simpler and more intuitive from the algorithmic point of view. The theory is exemplified at collocation methods for ODE boundary value problems and at finite element methods for elliptic PDE ...

متن کامل

Equidistribution grids for two-parameter convection–diffusion boundary-value problems

In this article, we propose an adaptive grid based on mesh equidistribution principle for two-parameter convection-diffusion boundary value problems with continuous and discontinuous data. A numerical algorithm based on an upwind finite difference operator and an appropriate adaptive grid is constructed. Truncation errors are derived for both continuous and discontinuous problems. Parameter uni...

متن کامل

High-order Methods for Semilinear Singularly Perturbed Boundary Value Problems

We considered finite difference methods of higher order for semilinear singularly perturbed boundary value problems, consisted of constructing difference schemes on nonuniform meshes. Construction of schemes is presented and convergence uniform in perturbation parameter for one method is shown on Bakhvalov’s type of mesh. Numerical experiments demonstrated influence of different meshes on devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 292  شماره 

صفحات  -

تاریخ انتشار 2016